研究领域和兴趣:
相对论含时密度泛函理论及GW方法
多组态自洽场相对论直接微扰理论
线性标度相对论密度泛函方法
“相对论性”化学与催化反应机理研究
相对论能带理论
相对论从头算朗之万基态与激发态分子动力学模拟
电、磁性质的相对论密度泛函理论方法
多参考态电子相关方法
主要论著:
1 Fundamentals of relativistic quantum mechanics
W. Liu*, Advances in relativistic molecular quantum mechanics, Phys. Rep. 537, 59-89 (2014).
W. Liu*, Perspective: Relativistic Hamiltonians, Int. J. Quantum Chem. 114, 983 (2014).
W. Liu* and I. Lindgren, Going beyond `no-pair relativistic quantum chemistry', J. Chem. Phys. 139, 014108 (2013).
Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians, J. Chem. Phys. 137, 154114 (2012).
W. Liu*, Perspectives of relativistic quantum chemistry: The negative energy cat smiles, Phys. Chem. Chem. Phys. 14, 35 (2012).
W. Liu*, The `big picture' of relativistic molecular quantum mechanics, in Theory and Appli-cations in Computational Chemistry: The First Decade of the Second Millenium, AIP Conf. Proc. 1456, 62-66 (2012).
W. Liu*, Ideas of relativistic quantum chemistry, Mol. Phys. 108, 1679 (2010).
W. Liu* and D. Peng, Exact two-component Hamiltonians revisited, J. Chem. Phys. 131, 031104 (2009).
D. Peng, J. Ma, and W. Liu*, On the construction of Kramers paired double group symmetry functions, Int. J. Quantum Chem. 109, 2149 (2009).
D. Peng, W. Liu*, Y. Xiao, and L. Cheng, Making four-and two-component relativistic density functional methods fully equivalent based on the idea of from atoms to molecule", J. Chem. Phys. 127, 104106 (2007).
W. Liu* and D. Peng, In nite-order Quasirelativistic Density Functional Method Based on the Exact Matrix Quasirelativistic Theory, J. Chem. Phys. 125, 044102 (2006); (E) 125, 149901 (2006).
W. Kutzelnigg* and W. Liu*, Quasirelativistic Theory Equivalent to Fully Relativistic Theory, J. Chem. Phys. 123, 241102 (2005).
2 Relativistic/nonrelativistic wave functions
W. Liu* and M. R. Ho mann*, SDS: the `static-dynamic-static' framework for strongly corre-lated electrons, Theor. Chem. Acc. 133, 1481 (2014).
Z. Li, S. Shao, and W. Liu*, Relativistic explicit correlation: Coalescence conditions and prac-tical suggestions, J. Chem. Phys. 136, 144117 (2012).
S. Mao, L. Cheng, W. Liu, and D. Mukherjee, A spin-adapted size-extensive state-speci cmulti-reference perturbation theory (I): Formal developments, J. Chem. Phys. 136, 024105 (2012).
S. Mao, L. Cheng, W. Liu, and D. Mukherjee, A spin-adapted size-extensive state-speci cmulti-reference perturbation theory (II): Molecular applications, J. Chem. Phys. 136, 024106(2012).
3 Relativistic properties
Y. Xiao, Y. Zhang, and W. Liu*, New experimental NMR shielding scales mapped relativistically from NSR: Theory and application, J. Chem. Theor. Comput. 10, 600 (2014).
Y. Xiao and W. Liu*, Body- xed relativistic molecular Hamiltonian and its application to nu-clear spin-rotation tensor: Linear molecules, J. Chem. Phys. 139, 034113 (2013).
Y. Xiao and W. Liu*, Body- xed relativistic molecular Hamiltonian and its application to nu-clear spin-rotation tensor, J. Chem. Phys. 138, 134104 (2013).
Q. Sun, Y. Xiao, and W. Liu*, Exact two-component relativistic theory for NMR parameters:General formulation and pilot application, J. Chem. Phys. 137, 174105 (2012).
Y. Xiao, Q. Sun, and W. Liu*, Fully relativistic theories and methods for NMR parameters,Theor. Chem. Acc. 131, 1080 (2012).
L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding: Magnetically balanced gauge-including atomic orbitals, J. Chem. Phys. 131, 244113(2009).
Q. Sun, W. Liu*, Y. Xiao, and L. Cheng, Exact two-component relativistic theory for nuclear magnetic resonance parameters, J. Chem. Phys. 131, 081101 (2009).
W. Kutzelnigg* and W. Liu*, Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation, J. Chem. Phys. 131, 044129 (2009).
L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for NMR parameters: Uni ed formulation and numerical assessment of di erent approaches, J. Chem. Phys. 130,144102 (2009); (E) 131, 1 (2009).
Y. Xiao, W. Liu*, L. Cheng, and D. Peng, Four-component relativistic theory for nuclear magnetic shielding constants: Critical assessments of di erent approaches, J. Chem. Phys.126, 214101 (2007).
Y. Xiao, D. Peng, and W. Liu*, Four-component relativistic theory for nuclear magnetic shield-ing constants: The orbital decomposition approach, J. Chem. Phys. 126, 081101 (2007).
4 Time-dependent density functional theory
J. Liu, Y. Zhang, and W. Liu*, Photoexcitation of Light-Harvesting C-P-C60 Triads: A FLMO-TD-DFT Study J. Chem. Theory Comput. 10, 2436 (2014).
Z. Li, B. Suo, Y. Zhang, Y. Xiao, and W. Liu*, Combining spin-adapted open-shell TD-DFT with spin-orbit coupling, Mol. Phys. 111, 3741 (2013).
Z. Li and W. Liu*, Theoretical and numerical assessments of spin-ip time-dependent density functional theory, J. Chem. Phys. 136, 024107 (2012).
Z. Li and W. Liu*, Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation, J. Chem. Phys. 135, 194106 (2011).
Z. Li, W. Liu*, Y. Zhang, and B. Suo, Spin-adapted open-shell time-dependent density func-tional theory. II. Theory and pilot application, J. Chem. Phys. 134, 134101 (2011).
Z. Li and W. Liu*, Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory, J. Chem. Phys. 133, 064106 (2010).
F. Wu, W. Liu*, Y. Zhang, and Z. Li, Linear scaling time-dependent density functional theory based on the idea of from fragments to molecule", J. Chem. Theor. Comput. 7, 3643 (2011).
D. Peng, W. Zou, and W. Liu*, Time-dependent Quasirelativistic Density Functional Theory Based on the Zeroth-order Regular Approximation, J. Chem. Phys. 123, 144101 (2005).
J. Gao, W. Zou, W. Liu*, Y. Xiao, D. Peng, B. Song, and C. Liu, Time-dependent Four-component Relativistic Density-Functional Theory for Excitation Energies. II. The Exchange-correlation Kernel, J. Chem. Phys. 123, 054102 (2005).
J. Gao, W. Liu*, B. Song, and C. Liu, Time-dependent Four-component Relativistic Density Functional Theory for Excitation Energies, J. Chem. Phys. 121, 6658 (2004).
5 BDF
W. Liu*, F. Wang, and L. Li, The Beijing Density Functional (BDF) Program Package: Methodologies and Applications, J. Theor. Comput. Chem. 2, 257 (2003).
W. Liu*, G. Hong, D. Dai, L. Li, and M. Dolg, The Beijing 4-component density functional program package (BDF) and its application to EuO, EuS, YbO, and YbS, Theor. Chem. Acc. 96, 75 (1997).